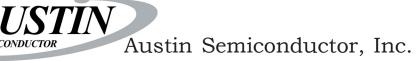

GENERAL DESCRIPTION

ASI's, AS28F128J3A Enhanced or Mil-Temp variant of Numonyx's Q-Flash family of devices, is a nonvolatile, electrically block-erasable (FLASH), programmable memory device manufactured using Numonyx's 0.15um process technology. This device containing 134,217,728 bits organized as either 16,777,218 (x8) or 8,388,608 bytes (x16). The device is uniformly sectored with one hundred and twenty eight 128KB ERASE blocks.

This device features in-system block locking. They also have a Common FLASH Interface [CFI] that permits software algorithms to be used for entire families of devices. The software is device-independent, JEDEC ID-independent with forward and backward compatibility.

Functional Block Diagram:



Additionally, the Scaleable Command Set [SCS] allows a single, simple software driver in all host systems to work with all SCS compliant FLASH memory devices. The SCS provides the fastest system/device data transfer rates and minimizes the device and system-level implementation costs.

To optimize the processor-memory interface, the device accommodates VPEN, which is switchable during BLOCK ERASE, PROGRAM, or LOCK BIT configurations and in addition can be hard-wired to VCC all dependent on the end application(s). VPEN is treated as an input pin to enable ERASING, PROGRAMMING, and BLOCK LOCKING. When VPEN is lower than the VCC lockout voltage (VLKO), all program functions are disabled. BLOCK ERASE SUSPEND mode enables the user to stop BLOCK ERASE to READ data from or PROGRAM data to any other blocks. Similarly, PROGRAM SUSPEND mode enables the user to SUSPEND PROGRAMMING to READ data or execute code from any un-suspended block(s). VPEN serves as an input with 2.7V, 3.3V or 5V levels for application programming. VPEN in this Q-Flash device can provide data protection when connected to ground. This pin also enables PROGRAM or ERASE LOCKOUT functions/ controls during power transitions.

This device is an even-sectored device architecture offering individual BLOCK LOCKING that can LOCK and UN-LOCK a block using the SECTOR LOCK BITS command sequence.

Status [STS] is a logic signal output that gives an additional indicator of the internal state machine [ISM] activity by providing a hardware signal of both the status and status masking. This status indicator minimizes central processing unit overhead and system power consumption. In the default mode, STS acts as an RY/BY\pin. When LOW, STS indicates that the ISM is performing a BLOCK ERASE, PROGRAM, or LOCK BIT configuration. When HIGH, STS indicates that the ISM is ready for a new command.

PEM AS28F128J3A Q-Flash

Three Chip Enable (CEx) pins are used for enabling and disabling the device by activating the device's control logic, input buffer, decoders, and sense amplifiers.

Chip Enable Truth Table

BYTE\enables the device to be used in x8 or x16 configuration. Byte=Low (logic 0) selects and 8-bit mode with address zero (A0) selecting the High or Low Byte and Byte=High (logic 1) selects the 16-bit or Word mode. When the device is in Word mode, address one (A1) becomes the low order address bit and address zero (A0) becomes a no-connect (NC).

RP\ is used to reset the device. When the device is disabled and RP\ is at VCC, the STANDBY mode is enabled. A reset time (tRWH) is required after RP\ switches to a High (logic 1) and the outputs become valid. Likewise, the device has a wake time (tRS) from RP\ High until WRITES to the Command User Interface [CUI] are recognized, RESETS the ISM and clears the status register.

Capacitance

Parameter/Condition	Symbol	Тур	Max	Units
Input Capacitance	Cin	5	8	рF
Output Capacitance	Cbyte	14	16	pF
Output Capacitance	Cout	5	12	pF

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum conditions for any duration or segment of time may affect device reliability.

<u>CE2</u>	<u>CE1</u>	<u>CE0</u>	Device
VIL	VIL	VIL	Enabled
VIL	VIL	VIH	Disabled
VIL	VIH	VIL	Disabled
VIL	VIH	VIH	Disabled
VIH	VIL	VIL	Enabled
VIH	VIL	VIH	Enabled
VIH	VIH	VIL	Enabled
VIH	VIH	VIH	Disabled

Absolute Maximum Ratings

Voltage	Min	Max	Units	Notes
Temperature Under Bias	-55	125	°C	
Storage Temperature	-65	125	°C	
Short Circuit Current		100	mA	1

Notes

1: All specified voltages are with respect to GND. Minimum DC voltage is -0.5v on input/output pins and -0.2v on Vcc and VPEN pins. During transitions, this level may undershoot to -2.0v for periods </= 20ns. Maximum DC voltage on input/output pins, Vcc and VPEN is VCC+0.5V which, during transitions, may overshoot to Vcc + 2.0v for periods <20ns.

Pin Description Table

Signal Name	Symbol	Туре	Pin	Description
	A0, A1, A2, A3, A4,		32,28,27,26,	Address Inputs during READ and WRITE Operations. A0 is only used in x8
	A5, A6, A7, A8, A9,		25,24,23,22,	mode and will be a NC in x16 mode.
Address	A10, A11,	la a ch	20,19,18,17,	
Address	A12,A13,A14,A15,	Input	13,12,11,10,	
	A16,A17,A18,A19,		8,7,6,5,	
	A20,A21,A22,A23		4,3,1,30	
Chip Enables	CE0, CE1, CE2	Input	14, 2, 29	Three Chip Enable pins for Multiple devices. See chart for function
Write Enable	WE\	Input	55	Write Control
Denet /Denner Denne	DD)	lar ar sale	16	Reset/Power-Down, When Low the control pin resets the status Reg.and
Reset/Power Down	RP\	Input	10	ISM to array READ mode.
Output Enable	OE/	Input	54	Output Enable control enable data output buffers when Low, and when
	UE(Input		High the output buffers are disabled
Byte Mode Control BYTE\		Input	31	Configuration Control pin. When High the device is in x16 mode, when
Byte Mode Control	DIIC	input	51	Low the device is in Byte mode (x8)
				Necessary Voltage pin for Programming, Erasing or configuring lock bits.
Programming Voltage	VPEN	Input		Typically connected to VCC. When VPEN =VPENLK, this</td
			15	enables Hardware Write Protect.
				Indicates the status of the ISM. When configured in level mode, STS acts
Status Pin/Flag	STS	Output	53	as a RY/BY\ pin. When configured in its pulse mode, it can
				pulse to indicate PROGRAM and or ERASE completion.
1	NCCO	Cumulu	42	Separate/Isolated Voltage supply for Input/Output bus. Allows
Input/Output Voltage	VCCQ	Supply	43	voltage matching to different interface standards.
Supply Voltage	VCCQ	Supply	9, 37	Power Supply: 2.7V-3.6V
Digital Ground	GND	Supply	21,42,48	Ground
No Connect(s)	NC	-	1,30,56	No electrical connection or function

Austin Semiconductor, Inc. reserves the right to change products or specifications without notice.

Bus Operations

Mode	RP\	CE0	CE1	CE2	OE/	WE\	VPEN	DQ	Notes	Address	STS Default Mode
Read Array	VIH	Enabled	Enabled	Enabled	VIL	VIH	Х	Dout	1,2,3	Х	High-Z (VOH with External PU)
Output Disable	VIH	Enabled	Enabled	Enabled	VIH	VHI	Х	High-Z		Х	х
Standby	VIH	Disabled	Disabled	Disabled	Х	Х	Х	High-Z		Х	х
Reset/Power-Down	VIL	Х	Х	Х	Х	Х	Х	High-Z		Х	High-Z (VOH with External PU)
Read Identifier Codes	VIH	Enabled	Enabled	Enabled	VIL	VIH	Х		4	See Table 31 of Numonyx DS	High-Z (VOH with External PU)
Read Query	VIH	Enabled	Enabled	Enabled	VIL	VIH	Х		5	See CFI Query of Numonyx DS	High-Z (VOH with External PU)
Read Status (ISM off)	VIH	Enabled	Enabled	Enabled	VIL	VIH	Х			Х	х
Read Status (ISM on)	VIH	Enabled	Enabled	Enabled	VIL	VIH	Х	Dout		Х	Х
Write	VIH	Enabled	Enabled	Enabled	VIH	VIL	VPENH	Din	3,6,7	Х	X

Notes

1 Refer to DC Characteristics. When VPEN</= VPENLK, memory contents can be read but not altered 2 X can be VIL or VIH for control and address pins, and VPENLK or VPENH for VPEN. See DC Characteristics for VPENLK and VPENH voltages

3 In default mode, STA is VOL when the ISM is executing internal Block Erase, Program, or lock bit configuration algorithms. It is VOH when the ISM is not busy, in block erase suspend mode,

program suspend mode, or reset/power-down mode. 4 See Read Identifier codes of the Numonyx Datasheet (DS)

USTIN

5 See Read Query Mode Command section of the Numonyx Datasheet (DS)

6 Command Writes involving block erase, program, or lock bit configuration are reliably executed when VPEN=VPENH and VCC is within Specification

7 Refer to Table 19 on page 35 of the Numonyx Datasheet (DS)

DC Electrical Characteristics

(VDD=3.0v-5%/+10%,TA=Min/Max temperatures of Operational Range chosen)

Symbol	Parameter	Test Conditions	Min	Max	Units	Notes
Vcc	Supply Voltage		2.7	3.6	V	
	Isolated Input/Output		2.7	3.6	V	
VccQ	Supply		2.7	5.0	v	
ILI	Input Load Current	Vin=VccQ or GND, VCC=VCC Max., VCCQ = VCCQ Max		±1.0	uA	
ILO	Output Leakage Current	Vin=VccQ or GND, VCC=VCC Max., VCCQ = VCCQ Max		±10.0	uA	
VIL	Input Low Voltage		-0.5	0.8	V	1
VIH	Input High Voltage		2	VCCQ+0.5	V	1
VOL	Output Low Voltage	VccQ=VccQ (MIN), IOL = 2mA		0.4	V	1,2
VUL	Output Low Voltage	VccQ=VccQ (MIN), IOL = 100uA		0.2	V	1,2
VOH	Output High Voltage	VccQ=VccQ (MIN), IOH = 2.5mA	0.85xVCCQ		V	1
VUH	Output High voltage	VccQ=VccQ (MIN), IOH = 100uA	VCCQ-0.2		V	1
VPENLK	Program Voltage Lockout			0.8	V	3,4,5
VPENH	Program Voltage			3.6	V	4,5,6
VLKO	Vcc Lockout Voltage		2.2		V	1
			Тур	Max		
ICC1	CC1 Standbu Current	CMOS Inputs; VCC= VCC (MAX), Device Enabled, RP\=VCCQ+/-0.2v	50	220	uA	
	Standby Current	TTL Inputs; VCC=VCC (MAX): Device Enabled, RP\=VIH	90	2000	uA	
ICC2	Power-Down Current	RP\=GND,+/-0.2V; IOUT (STS)=0mA	50	120	uA	
		CMOS Inputs; VCC=VCC(MAX); VCCQ=VCCQ(MAX) using standard 4-	45	20		
1000		word page mode READS; Device is enabled; f=5MHz; IOUT=0mA	15	20	mA	
ICC3	Page Mode READ Current	CMOS Inputs; Vcc=Vcc(MAX); VCCQ=VCCQ(MAX) using standard 4-word				
		page mode READS; Device is enabled; Ff=33MHz; IOUT=0mA	24	30	mA	
	Asynchronous READ Mode	CMOS Inputs; VCC=VCC(MAX); VCCQ=VCCQ(MAX) using standard	30	50	0	
ICC4	Current	work/byte single READS; Device Enabled; f=5MHz; IOUT=0mA	30	50	mA	
ICC5	PROGRAM or set LOCK BITS	CMOS Inputs, VPEN=VCC	35	60	mA	
ICCS	Current	TTL Inputs, VPEN=VCC	40	70	ma	
	BLOCK ERASE or CLEAR	CMOS Inputs, VPEN=VCC	35	70		
ICC6	BLOCK LOCK bits Current	TTL Inputs, VPEN=VCC	40	80	mA	
	PROGRAM SUSPEND or					
ICC7	BLOCK ERASE SUSPEND	Device is Disabled		10	mA	
	Current					

Notes

[1] Sampled, not 100% tested

[2] Includes STS

[3] ICCWS and ICCES are specified with the device deselected. If the device is read or written while in ERASE SUSPEND mode, the device's curent draw is ICCR or ICCW

[4] BLOCK ERASE, PROGRAMMING, and LOCK BIT configurations are inhibited when VPEN</= VPENLK, and they are not guaranteed in the range betwwn VPENLK (MAX) and VPENH (MIN), or above VPENH (Max)

[5] Typically, VPEN is connected to VCC
[6] VPENH (MIN) = 2.7v

PEM

Q-Flash

AS28F128J3A

PEM AS28F128J3A **Q-Flash**

Memory Command Set Operations

USTIN

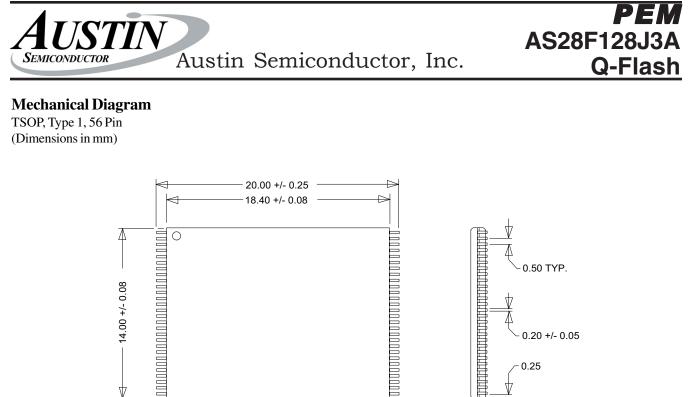
	Scalable or Basic Command]	F	irst Bus Cyc	le	Se	cond Bus Cy	cle	T
Command	Set [SCS or BCS]	Bus Cycles	Operation	Address	Data	Operation	Address	Data	Notes
READ ARRAY	SCS/BCS	1	WRITE	Х	FFh				
READ IDENTIFIER CODES	SCS/BCS	>/=2	WRITE	Х	90h	READ	IA	ID	1
READ QUERY	SCS		WRITE	Х	98h	READ	QA	QD	
READ STATUS REGISTER	SCS/BCS	2	WRITE	Х	70h	READ	Х	SRD	2
CLEAR STATUS REGISTER	SCS/BCS	1	WRITE	Х	50h				
WRITE TO BUFFER	SCS/BCS	>2	WRITE	BA	E8h	WRITE	BA	Ν	3,4,5
WORD/BYTE PROGRAM	SCS/BCS	2	WRITE	Х	40h or 10h	WRITE	PA	PD	6,7
BLOCK ERASE	SCS/BCS	2	WRITE	BA	20h	WRITE	BA	D0h	5,6
BLOCK ERASE/PROGRAM SUSPEND	SCS/BCS	1	WRITE	Х	B0h				7,8
BLOCK ERASE/PROGRAM RESUME	SCS/BCS	1	WRITE	Х	D0h				7
CONFIGURATION	SCS	2	WRITE	Х	B8h	WRITE	Х	CC	
SET BLOCK LOCK BITS	SCS	2	WRITE	Х	60h	WRITE	BA	01h	
CLEAR BLOCK LOCK BITS	SCS	2	WRITE	Х	60h	WRITE	Х	D0h	
PROTECTION PROGRAM		2	WRITE	Х	C0h	WRITE	PA	PD	

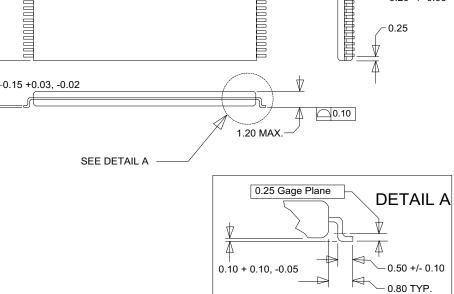
Key:

- Identifier Code address [IA]
- [ID] Data read from identifier Code
- Address within a Block [BA]
- [QA] Query data base Address
- [PA] Address of Memory location to be programmed
- [QD] Data read from Query data base
- [SRD] Data read from Status Register

Notes

- Following the READ IDENTIFIER CODES command, READ operations access manufacturer, device, and block lock codes. [1]
- [2] If the ISM is running, only DQ7 is valid; DQ15-DQ8 and DQ6-DQ0 are placed in High-Z
- After the WRITE-to-BUFFER command is issued, check the XSR to make sure a buffer is available for WRITING
- [3] [4] The number of Bytes/words to be written to the write buffer = n+1, where n=byte/word count argument. Count ranges on this device for byte mode are n=00H to n=1Fh and for word mode, n=0000h to 000Fh. The third and consecutive bus cycles, as determined by n, are for writing data into the write buffer. The CONFIRM command (D0h) is expected after exactly n+1 WRITE cycles; any other command at that point in the sequence aborts the WRITE-to-BUFFER operation.
- The WRITE-to-BUFFER or ERASE operation does not begin until a CONFIRM command (D0h) is issued [5]
- [6] Attempts to issue a BLOCK ERASE or PROGRAM to a locked block will fail
- Etiher 40h or 10h is recognized by the ISM as the byte/word program setup [7]
- PROGRAM SUSPEND can be issued after either the WRITE-to-BUFFER or WORD/BYTE PROGRAM operation is inititated. The CLEAR BLOCK [8] LOCK BITS operation simultaneously clears all block lock bits.

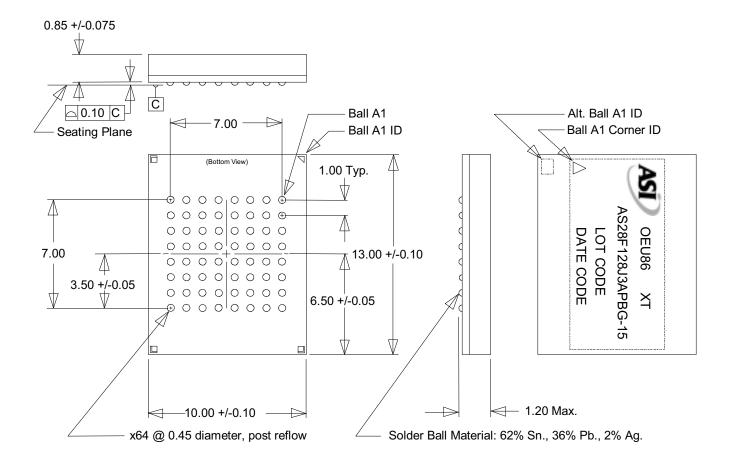

AC Switching Characteristics


(VDD=3.0V-5%/+10%, TA= Min. / Max. temperatures of Operational Range chosen)

Parameter	Symbol	128	BMb	Units	Notes
Write Operations		Min	Max		
RP\ High Recovery to WE\ (CEx) going Low	tRS	1.0		us	1
CEx (WE\) Low to WE\ (CEx) going Low	tCS	0		ns	
Write Pulse Width	tWP	70.0		ns	
Data Setup to WE\ going High	tDS	50.0		ns	
Address Setup to WE\ going High	tAS	55.0		us	
CEx Hold from WE\ High	tCH	0		ns	
Data Hold from WE\ High	tDH	0		1	
Address Hold from WE\ High	tAH	0		1	
Write Pulse Width High	tWPH	30		ns	
VPEN Setup to WE\ going High	tVPS	0		ns	1
Write Recovery before READ	tWR	35		ns	
WE\ High to STS going Low	tSTS		200	ns	
VPEN Hold from valid SRD, STS going High	tVPH	0		ns	1
WE\ High to Status Registry Busy	tWB		200	ns	1
Block Erase, Program and Lock Bit Performance		Тур	Max		
Write Buffer Byte Program time (Program time 32 Bytes/ 16 Words)	tWED1	180	654	us	
Byte/Word Program time	tWED2	125	630	us	
Block Program time	tWED3	0.70	2.4	sec	
Block Erase time	tWED4	1.00	5	sec	
Set Lock Bits time	tWED5	50	75	us	
Clear Block Lock Bits time	tWED6	0.50	0.7	sec	
Program Suspend Latency time to Read	tLPS	25	30	us	
Erase Suspend Latency time to Read	tLES	25	35	us	
Read Only Operations		Min	Max		
Read Cycle time	tRC	115		ns	
Address to Output Delay	tAA		115	ns	
CEx to Output Delay	tACE		115	ns	
OE\ to Non-Array Output Delay	tAOE		50	ns	
OE\ to Array Output Delay	tAOA		25	ns	
RP\ High to Output Delay	tRWH		210	ns	
CEx to Output in Low-Z	tOEC	0		ns	1
OE\ to Output in Low-Z	tOEO	0		ns	1
Cex High to Output in High-Z	tODC		35	ns	1
OE\ High to Output in High-Z	tODO		15	ns	1
Output Hold from Address, Cex, or OE\ change, whichever occurs first	tOH	0		ns	1
CEx Low to BYTE\ High or Low	tCB		10	ns	1
BYTE\ to Output Delay	tABY		1000	ns	1
BYTE\ to Output in High-Z	tODB		1000	ns	1
CEx High to CEx Low	tCWH	0.0		ns	1
Page Address Access	tAPA		25	ns	
Reset Specifications		Min	Max		
RP\ Pulse Low time	tPLPH	35		us	
RP\ High to RESET during BLOCK ERASE, PROGRAM, or Lock Bit configuration	tPHRH		100	ns	

Notes to Switching Specifications:

1. Sampled, not 100% tested


\ ⊥ ↓

PEM AS28F128J3A Q-Flash

Mechanical Diagram

PBGA, 10mm x 13mm, 64 Ball w/ 1.00 Pitch (Dimensions in mm)

ASI Ordering Information

ASI Part Number	Configuration	Speed (ns)	Pkg.	Comments				
Enhanced Operating Range (-40°C to +105°C)								
AS28F128J3ARG-15/ET	128Mb, x8/x16 Q-Flash	115	TSOP1-56					
				Consult Factory,				
AS28F128J3APBG-15/ET	128Mb, x8/x16 Q-Flash	115	FBGA-64	MOQ's Apply				
Extended Operating Rang	e (-55 ⁰ C to +125 ⁰ C)							
		445	TCOD4 FC					
AS28F128J3ARG-15/XT	128Mb, x8/x16 Q-Flash	115	TSOP1-56					
				Consult Factory,				
AS28F128J3APBG-15/XT	128Mb, x8/x16 Q-Flash	115	FBGA-64	MOQ's Apply				

DOCUMENT TITLE Plastic Encapsulated Microcircuit 128Mb, x8 and x16 Q-FLASH Memory Even Sectored, Single Bit per Cell Architecture

REVISION HISTORY

USTIN

Semiconductor

Rev #	<u>History</u>
5.5	Updated with Numonyx Info

Release Date March 2009 <u>Status</u> Release